Oct 132013
 

Cukup sering keyword tegangan sentuh terbaca oleh mbah Google. Dalam tulisan ini kita gali kembali ďefinisinya dan aplikasinya. Menurut IEC 60050, tegangan sentuh adalah tegangan antara objek yang bertegangan dengan kaki personel yang menyentuh objek bertegangan tersebut. Tegangan sentuh dibagi 2 kategori, tegangan sentuh langsung dan tegangan sentuh tidak langsung. Disebut tegangan sentuh langsung,  jika objek yang bertegangan tadi memang bertegangan dalam kondisi normal. Disebut tegangan sentuh tidak langsung,  jika objek yang bersangkutan tidak bertegangan pada kondisi normal. Objek terebut menjadi bertegangan ketika terjadi gangguan (fault), contoh body perlengkapan listrik.

 
Tegangan sentuh langsung adalah tegangan antara objek yang bertegangan pada kondisi NORMAL dengan kaki manusia yang menyentuh objek tersebut

 

tegangan sentuh tidak langsung, jika objek yang bersangkutan tidak bertegangan pada kondisi normal. Objek terebut menajdi bertegangan ketika terjadi gangguan (fault), contoh body perlengkapan listrik.

Bagaimana ini bisa berbahaya? Lebih lengkap bisa dibaca di posting yang terdahulu pentanahan 4.

Oct 192011
 

Dari posting Pentanahan 4 dan Perihal Tegangan Sentuh pada sistem High Resistance Grounding, kita belum mendapatkan berapakah tegangan sentuh pada saat “second fault” terjadi. Tulisan ini ingin mengungkapkan mengapa pada saat “second fault“, gangguan tersebut harus segera diamankan. Ilustrasi dibawah ini akan menjadi acuan pembicaraan kita.

Saat second fault terjadi, arus ganguan I_f akan mengalir pada loop ABCDEFGHIJ. Mari kita umpamakan beban 1 di supply melalui kabel dengan diameter 50 sqmm dengan panjang 50 meter dan beban 2 disupply melalui kabel 25 sqmm dengan panjang 30 meter. Kabel grounding memiliki ukuran yang sama dengan kabel phase dan resistansi pada bagian F-E diasumsikan NOL.

Dari persamaan tentang resistansi, R=\rho l/S, maka impedansi loop fault adalah

Z_{loop}=2\times[\rho\times(\frac{30}{25}+\frac{50}{50}) . Dimana \rho =22.5\times 10^{-3} \Omega .mm2/mZ_{loop}=2\times 22.5\times 10^{-3}\times 2.2Z_{loop}= 99 m\Omega

Kita akan mengasumsikan tegangan saat terjadinya second fault adalah 0.8 V (line-line). Nilai 0.8 ini dianggap cukup worst case untuk memastikan unti proteksi bekerja. Dengan mengasumsikan U_{AJ}=0.8U_n=400\times 0.8 =320 V maka kita dapat arus gangguan (If), I_f=\frac{320}{99\times 10^{-3}}=3232 A.

Akibat arus gangguan sebesar If tersebut maka terdapat beda potensial antara beban 1 (p1) dan beban 2(p2), sebesar ZDGIf=Zloop/2 x If =159 volt.

Body dari beban 1 (p1) akan mengalami kenaikan tegangan terhadap tanah sebesar Z_{FG}I_f=(\rho\frac{50}{50})(I_f)=22.5\times 10^{-3}\times 3232 =73 V

Body dari beban 2 (p2) akan mengalami kenaikan tegangan terhadap tanah sebesar Z_{DE}I_f=(\rho\frac{30}{25})(I_f)=22.5\times 10^{-3}\times 3232 =87 V

Nilai ini jelas melebihi batas minimum yang dipersyaratkan oleh IEC dan harus diamankan kurang dari 5 seconds(lihat posting Pentanahan 4) .

Second fault terjadi di remote system.

Apa yang terjadi jika second fault terjadi di beban 3 (p3)? Untuk hal ini, maka arus gangguan yang kembali akan ditentukan oleh besarnya rp dan rp3. Kita asumsikan bahwa rp= 10 ohm dan rp3=15 ohm. Maka kita akan mendapatkan sebuah rangkaian serial dari V3-cable phase- load 1(p1)grounding conductor (of load 1)-rp-rp3-grounding conductor (of load 3)- load 3 (p3) – conductor of load 3 (p1). Umumnya rsistansi elektrode pentanahan (rp dan rp3) memiliki orde jauh lebih tingi daripada resistansti conductor. Lihat ilustrasi dibawah ini.

Jadi beda potensial antara permukaan load 1, yang fault, dengan ground adalah \frac{400}{10+15}\times 10 = 160 V. sesuai dengan hukum pembagi tegangan.

Beda potensial di permukaan load 3 dengan ground adalah \frac{400}{10+15}\times 15=240V.

terlihat jelas bahwa menghindari terjadinya remote load pada sistem IT sangat membantu menurunkan tegangan sentuh.

%d bloggers like this: